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Abstract—A significant quantity of sensors distributed
throughout the natural gas pipeline is susceptible to errors.
Timely diagnosis of sensor faults in such scenarios holds
great significance in averting catastrophic failures. This
article proposes a novel approach termed model-based
multisensor fault detection, isolation, and accommodation
(MM-SFDIA) technique to mitigate multiple sensor faults
occurring simultaneously in large-scale distributed systems.
The proposed approach leverages a distributed filtering
framework, employing multiple local ensemble Kalman filters
(EnKFs). Each individual local filter generates a distinct local
state estimation using a distinct set of sensor measurements.
By analyzing the differences among these local state esti-
mates, a strategy based on state consistency, the faulty sensors are identified. Furthermore, an adaptive thresholding
technique is devised to ensure resilient fault detection and identification. Compared with the existing state-of-the-art
techniques, the proposed approach offers a lower computational burden and is applicable to high-dimensional nonlinear
systems with numerous sensor faults. Moreover, the results affirm the effectiveness of the proposed architecture,
demonstrating a high accuracy and low execution time in detecting and isolating multiple sensor faults.

Index Terms— Adaptive threshold, data fusion, ensemble Kalman filter (EnKF), fault diagnosis, model-based technique,
multiple sensor faults, natural-gas pipelines, transient flow.

I. INTRODUCTION

T IMELY monitoring of natural-gas pipelines is crucial to
ensure the safety and reliability of the overall system.

With the advancements in digital technologies, several urban
gas pipeline monitoring systems have been developed to
detect potential leaks [1], [2]. These systems typically employ
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different types of gas-monitoring sensors to continuously
monitor gas pipelines and promptly detect leaks or potential
issues, thus enhancing the overall security and reliability of
the pipeline infrastructure. However, the sensors installed in
the pipelines might be faulty (e.g., due to harsh environmental
conditions) with incorrect sensor readings and delayed/missed
leak detection resulting potentially in catastrophic failures.
Consequently, it is crucial to develop effective techniques for
timely fault diagnosis in gas-monitoring systems.

Several approaches, including manual analysis methods,
signals processing-based methods, model-based methods, and
data-driven methods, can be employed to facilitate sensor
fault detection in natural-gas pipelines. Manual analysis diag-
nostic approaches are often inaccurate and time-consuming;
conversely, fault diagnosis based on data-driven approaches
has been widely used for early sensor-fault detection due to
its high capabilities for information processing and complex-
data representation [3], [4], [5], [6]. However, data-driven
techniques necessitate substantial volumes of data for training
and might be unsuitable for online implementation in large-
size systems. Differently, methods based on signal-processing
techniques are likely lighter to implement and easier to
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interpret, but are significantly impacted by background noise
and heavily rely on specialized domain expertise, thus still
exhibiting relevant challenges to guarantee the accuracy of
real-time fault diagnosis [7].

The adoption of model-based techniques for fault diagnosis
has gained significant attention, since they are not limited by
data availability: if the system model is sufficiently accurate,
these techniques exhibit interesting scaling and generalization
capabilities. Model-based approaches operate by analyzing
the residual signal, which represents the disparity between a
computational model and real-world measurements. Among
model-based techniques, observer-based methods are predom-
inantly preferred due to their effectiveness and theoretical
advantages [8]. These methods estimate the system outputs by
employing an observer that is resilient against model uncer-
tainty and interruptions. The most efficient observer-based
technique is the Kalman filter, although its application is
confined to linear systems. For nonlinear systems, several
different variants of the Kalman filter have been proposed,
including the extended Kalman filter (EKF) [9], the unscented
Kalman filter (UKF) [10], the ensemble Kalman filter (EnKF)
[11], and the cubature Kalman filter (CKF) [12].

In general, centralized and distributed data-fusion architec-
tures based on Kalman filters (or different variants) are utilized
to facilitate fault diagnosis in large-scale distributed plants
with numerous interconnected subsystems. Centralized struc-
tures provide high accuracy; however, its significant computing
costs may prevent real-time implementation, particularly when
dealing with a large number of sensors [10], [21], [22].
In contrast, distributed architectures operate by employing
several local filters that work in parallel and subsequently
combine their respective outputs through a master filter. This
approach enhances decision-making capabilities while reduc-
ing the overall computational load [23], [24], [25], [26].

Distributed and centralized multisensor integration archi-
tectures based on adaptive EKF data fusion techniques are
discussed in [13] for sensor and process fault diagnosis: 1) the
centralized architecture, where a single filter combines data
from various sensors and exhibits high estimation accuracy,
but less resilience to sensor faults and 2) conversely, the
distributed architecture, characterized by a collection of local
filters (one for each sensor), exhibits limitations in detecting
multiple sensor faults and handling substantial nonlinearity.
Furthermore, multisensor data fusion techniques for identify-
ing both hardware and software faults are investigated in [14],
[15], and [27]. These methodologies adopt a redundancy-based
strategy (duplication/comparison) for fault diagnosis, where
two sensors collaborate to estimate a single parameter. How-
ever, these techniques are only applicable to a single-fault
scenario, and the complexity notably escalates while dealing
with scenarios involving multiple faults. A fusion technique
based on Wasserstein average-consensus classification to han-
dle faulty sensors is proposed in [28]. In this approach,
local filters exchange information with neighboring filters and
employ clustering algorithms to distinguish between trusted
and untrusted local estimates. However, this method is con-
fined to linear systems and needs at least half of the sensors
being trustworthy. In [16], a sensor-fusion approach, involving

several Kalman filters (each customized for a specific defect),
is designed for nonlinear systems; nevertheless, this method
exhibits substantial computational cost restrictions. In [17],
a sensor-fusion technique utilizing UKF is investigated for the
monitoring of a gas turbine engine: four distinct local filter
combinations are considered (corresponding to the sensors
installed on the gas turbine); nonetheless, this method lacks
the ability to generalize and struggles to accurately isolate the
faulty sensors. Similarly, a sensor-fusion system based on UKF
is developed in [18] for applications within microgrids, where
the number of local filters can be adjusted to accommodate any
quantity of sensors; however, the approach solely addresses a
single-fault scenario and demonstrates elevated computational
costs for multiple fault scenarios.

Most of the existing state-of-the-art techniques primarily
focus on single-fault scenarios, while their computation com-
plexity significantly increases when addressing multiple sensor
faults. In addition, these techniques hinge on basic models
that fall short of capturing the wide spectrum of large-scale
dynamics evident in complex real-world processes. When
applied to highly nonlinear, complex, and large-scale systems,
these approaches entail significant computational costs. Hence,
it is crucial to develop a multisensor fault detection framework
that is capable of efficiently handling multiple sensor faults
in highly nonlinear, complex, and large-scale systems while
ensuring minimal computational complexity.

To address these issues, we propose a novel architecture,
termed model-based multisensor fault detection, isolation,
and accommodation (MM-SFDIA), tailored for natural gas
pipelines. The MM-SFDIA approach capitalizes on a dis-
tributed filtering structure employing a bank of EnKFs, where
each local EnKF utilizes a distinct set of measurements to yield
an independent local state estimate. The architecture employs
a state coherence strategy that evaluates disparities among
the independent local state vector estimations to diagnose
faults: during fault-free scenarios, the local state estimates
exhibit consistency; conversely, in the presence of a fault,
the estimates display high state-variance values. To enhance
the accuracy of fault detection, we have also devised a novel
adaptive thresholding method that dynamically adjusts the
threshold value based on the evolving system conditions.
Upon identifying the faulty sensors based on the thresholding
technique, the erroneous measurements are substituted with
accurately estimated values achieved via spatial interpolation
of nonfaulty sensor measurements. In addition, the perfor-
mance of the proposed architecture is evaluated by employing
simulated nonlinear spatiotemporal data combined with syn-
thetically generated faults, specifically bias faults and drift
faults. The results demonstrate that the proposed approach
exhibits both swift computational speed and remarkable accu-
racy, even when dealing with weak faults.

In our previous works [19], [20], we presented a
model-based SFDIA framework for natural-gas pipelines
using the technique outlined in [18]; however, it predomi-
nantly focused on addressing single-sensor faults and exhib-
ited considerable computational overhead when confronted
with multiple-sensor faults. Differently, the newly proposed
MM-SFDIA architecture demonstrates reduced computational
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TABLE I
COMPARISON OF THE PROPOSED SCHEME WITH THE EXISTING WORKS ON SENSOR FAULT DIAGNOSIS

complexity in scenarios involving multiple sensor faults.
More specifically, it effectively handles simultaneous multiple
sensor faults in highly large-scale, nonlinear, and complex
systems by employing an architecture featuring a predeter-
mined number of local filters; thus, it can be applied to
diverse systems encompassing any combination of sensors
and faults while requiring an exceptionally low-computational
cost. Furthermore, we introduce a novel adaptive thresholding
technique that substantially enhances the detection perfor-
mance. Our proposed architecture optimizes the utilization
of EnKF, notably reducing computational complexity while
achieving high estimation and detection performance in large-
scale systems.

Table I furnishes a comparative summary of the proposed
approach in contrast to relevant existing state-of-the-art fault
diagnosis techniques. The primary contributions of this article
are succinctly outlined below.

1) A novel model-based architecture is proposed for
addressing simultaneous multiple faults in natural gas
pipelines experiencing transient flow. The proposed
architecture leverages the benefits of the distributed
EnKF-based filtering framework and state consistency
strategy to effectively handle simultaneous multiple sen-
sor faults in large-scale distributed systems.

2) The detection technique, based on state coherence, uti-
lizes local state variance to assess differences among
independent estimations of the local state vectors.

3) To improve fault detection accuracy, we have devel-
oped an innovative adaptive thresholding technique that
dynamically adapts the threshold value according to the
changing system conditions.

4) The fault accommodation is performed by substituting
inaccurate measurements with estimated values from
reliable sensor data through spatial interpolation.

5) A transient flow model is thoroughly discussed accom-
panied by its numerical solution and emphasis on its
application in fault diagnosis.

The rest of this article is outlined as follows. Section II
discusses the transient flow model, and Section III presents
the proposed MM-SFDIA architecture along with the adaptive
thresholding technique. The simulation results to validate the
performance of the proposed MM-SFDIA architecture are
analyzed in Section IV. Finally, Section V provides some
concluding remarks and future directions.

II. TRANSIENT-FLOW MODEL

A. Partial Differential Equations
The system of the first-order quasilinear nonhomogeneous

hyperbolic partial differential equations (PDEs) can accurately
model the transient flow of natural gas in pipelines [29]. Based
on the fundamental principles of mass, momentum, and energy
conservation, the system of PDEs can be mathematically
represented as follows:

∂ρ

∂t
+

∂

∂s
(ρν) = 0 (1)

ρ
∂ν

∂t
+

∂p
∂s
+ ρν

∂ν

∂s
= −

w

A
− ρg sin θ (2)

ρ

(
∂h
∂t
+ ν

∂h
∂s

)
−

∂p
∂t
− ν

∂p
∂s
=

q + wν

A
. (3)

Here, the variables A, ν, ρ, p, h, q, w, θ , and g denote
the cross-sectional area, velocity, density, pressure, specific
enthalpy, heat flow into the pipe per unit length and time,
frictional force per unit length of pipe, angle of inclination,
and gravitational acceleration, respectively. The symbols t and
s correspond to the time and space variables, respectively.
Furthermore, the spatiotemporal domain � can be described
as � = {(s, t) : 0 ≤ s ≤ L , 0 ≤ t ≤ t f }, where t f signifies the
time span and L denotes the length of the pipeline. Utilizing
the real gas equation of state p = zρRT (where z, R, and T
represent the gas compressibility factor, the ideal gas constant,
and the temperature, respectively) and the thermodynamic
identity [30], expressed as follows:

dh = C pdT +

(
T
ρ

(
∂ρ

∂T

)
p
+ 1

)
dp
ρ

(4)

(where C p denotes the specific heat at constant pressure),
(1)–(3) can be restructured as the set of hyperbolic equations
using temperature, velocity, and pressure as the dependent
variables and are specified in [31]. The governing system of
PDEs can be compactly represented in terms of pressure, mass
flow rate, and temperature as follows:

∂x
∂t
+ A(x)

∂x
∂s
+ ζ (x) = 0 (5)

where x = [p, ṁ, T ]T [32], [33]. When θ = π , the
coefficient matrix A(x) ∈ R3×3 can be expressed as (6),
shown at the bottom of the next page, and the vector ζ (x) ∈

R3×1 can be defined as shown in the equation at the bot-
tom of the next page, where α1 = 1 + (T/z)((∂z/∂T ))p,
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α2 = 1 − (p/z)((∂z/∂p))T , and the isentropic wave speed
is as = (∂p/∂ρ)

1/2
s [29]. The frictional force per unit length

is w = (1/8) fρv|v|πd , where the friction factor f is
calculated using the Colebrook–White equation [34] and d is
the diameter. Furthermore, the heat flow between the natural
gas and its surroundings per unit length and time is defined
as q = −πdU (T − Ts), where U and Ts denote the overall
heat transfer coefficient and ambient temperature, respectively.
A steady-state heat transfer is assumed. The transport and
thermodynamic properties, specifically z and C p, are computed
using GERG-2004 [35]. Moreover, validating the flow model
for long-distance pipelines poses challenges. This difficulty
arises from the fact that variables, such as internal pipe rough-
ness, surrounding temperature, heat exchange, heat capacity,
thermal conductivity, and diffusivity, undergo changes over
time, and their accurate determination is challenging. Essen-
tially, these quantities, which depend on spatial and time
variables, are difficult to determine. The validation of the flow
model in [36] showed that the discrepancies between modeled
and measured flow values are most likely caused by physical
approximation errors.

B. Numerical Method of Lines
The numerical method of lines, which relies on spatial

discretization, serves as an effective approach for solving tran-
sient models involving the system of PDEs. This approach is
a well-established generic method for solving time-dependent
PDEs [37]. For spatial discretization, a five-point, fourth-order
finite difference scheme is used, because it yields satisfactory
results for the transient flow model containing mild fronts
in the boundary conditions. The system of PDEs in (5) is
spatially discretized to yield a set of ordinary differential
equations (ODEs). This approximation exhibits an error of
order O(1s4), where 1s represents the spatial step size.
On spatial discretization, the system of ODEs can be given
as follows:

dx(t)
dt
= A(x)Dx(t)− ζ (x, t) ≜ ϕ(t, x(t)) (7)

where A(x) ∈ R3n×3n denotes the assembled matrix, ζ (x, t) ∈
R3n×1 represents the assembled column vector of ζ (x), and the
state vector x becomes

x(t) =
[

p1(t), . . . , pi (t), . . . , pn(t), ṁ1(t), . . . , ṁi (t), . . . ,

ṁn(t), T1(t), . . . , Ti (t), . . . , Tn(t)
]T

. (8)

Furthermore, the computational matrix D can be expressed as
follows:

D=−
1

121s



−25 48 −36 16 −3 · · · 0
−3 −10 18 −6 1 · · · 0
1 −8 0 8 −1 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 1 −8 0 8 −1
0 · · · −1 6 −18 10 3
0 · · · 3 −16 36 −48 25


.

The system of ODEs defined in (7) can be solved using the
fourth-order Runge–Kutta method. The discretized equations
with a constant time step can be formulated as a state-space
model. Furthermore, its solution (advanced in time) is

x(t +1t) = x(t)+
1
6
(k1 + 2k2 + 2k3 + k4)

where

k1 = 1tϕ(t, x(t))

k2 = 1tϕ
(

t +
1
2
1t, x(t)+

1
2

k1

)
k3 = 1tϕ

(
t +

1
2
1t, x(t)+

1
2

k2

)
k4 = 1tϕ(t +1t, x(t)+ k3).

To ensure numerical stability, it is crucial to satisfy the
Courant–Friedrichs–Lewy condition [38], given as follows:

1t
1s
≤

1
|ν| + as

. (9)

Next, the proposed model-based SFDIA architecture for simul-
taneous multiple fault diagnosis is discussed.

III. MM-SFDIA ARCHITECTURE

The proposed architecture leverages the concept of state
consistency within the framework of a distributed EnKF.
More specifically, the architecture combines the benefits of
several EnKFs for local state estimation while also possessing
the capability to detect and isolate multiple potential faulty
sensors. The incorporation of several local filters not only
alleviates computational load, but also offers effective fault
detection and isolation performance.

The schematic of the proposed MM-SFDIA architecture
is shown in Fig. 1 and described as follows. Initially, all

A(x) =



−
ṁ
(
a2

s α2 − RT z
)

Ap
a2

s

A
a2

s ṁα1

AT

A −
a2

s α
2
2C pṁ2

− Ra2
s α

2
1α2ṁ2z

acp p2

ṁ
(
α2C pa2

s − Rza2
s α

2
1 + RT C pz

)
acp p

a2
s α1ṁ2

(
α2C p − Rα2

1 z
)

AT C p p

−
RT a2

s α1α2ṁz
acp p2

RT a2
s α1z

acp p
Rṁz

(
a2

s α
2
1 + T C p

)
acp p


ζ (x) =

[
−

a2
s α1(Aqp + RT ṁwz)

A2T C p p
w −

a2
s α2(Aqp + RT ṁwz)

A2C p p2

]T

(6)
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Fig. 1. Block diagram of the proposed MM-SFDIA architecture.

sensor measurements are partitioned into various subsets. Sub-
sequently, the local EnKFs operate simultaneously to estimate
the local state vectors and their associated covariances using
their specific subset of measurements. The sensor faults are
diagnosed by comparing the state variance vector against an
adaptable threshold, which is dynamically calibrated using
the state variance vectors. Upon identifying a faulty sensor,
the corresponding corrected measurement is determined via
interpolation across the spatial domain (relying on measure-
ments from nonfaulty sensors). Using the corrected sensor
measurements, the global estimates are generated utilizing
the conventional EnKF, which are fed back to the locals for
initialization during the subsequent iteration. All the steps
required to implement the MM-SFDIA architecture are com-
prehensively discussed in the following subsections.

A. Grouping of Sensors
The initial step in the distributed filtering-based approach

involves the grouping of sensor measurements. A unique
grouping strategy, where each local filter is assigned a dis-
tinct set of measurements, is utilized. The number of locals,
denoted by M , is chosen based on a specific use case. The
N sensor measurements are divided among the M locals
in such a way that each local filter is assigned a distinct
set of N/M measurements.1 Subsequently, each local filter
yields its independent state estimate based on its own set of
measurements. By employing the state consistency strategy,
which ensures that the estimated local state vectors from
different local filters exhibit consistency in the absence of
sensor faults, it becomes possible to analyze the variations
among these independent local state vector estimates. This
approach proves to be highly effective in detecting faulty
sensors, thus rendering the proposed architecture a robust and
reliable solution for fault detection. However, it is crucial to
highlight that the state consistency approach can be effectively

1For sake of simplicity, we assume that N/M is an integer number.

applied only when the sensor measurements are independent
and uncorrelated. In the following subsection, the design of
the local filter employed within the distributed framework is
investigated.

B. Local Filter Design
The nonlinear discrete-time process model at the kth dis-

crete time for the i th local filter (i = 1, 2, . . . , M) can be
described as follows:

xi,k = f i
(
xi,k−1, uk−1

)
+ vi,k (10)

where vi,k ∈ Rnx×1
∼ N (0, Qi,k) is the process noise and the

nonlinear mapping f i (·) : Rnx × Rnu → Rnx represents the
process model for the i th local filter. The input vector uk−1 ∈

Rnu×1 comprising of the initial and boundary conditions is
defined as uk−1 = [uT

inuT
bc,k−1]

T . The local-filter state vector
xi,k ∈ Rnx×1 is

xi,k =
[

p1(k), . . . , pn(k), ṁ1(k), . . . , ṁn(k),

T1(k), . . . , Tn(k)
]T

. (11)

The measurement model at the kth discrete time for the i th
local filter can be expressed as follows:

yi,k = hi
(
xi,k, uk

)
+ ni,k (12)

where ni,k ∈ Rny×1
∼ N (0, Ri,k) is the measurement noise,

yi,k ∈ Rny×1 corresponds to the filter output, and the mapping
hi (·, ·) : Rnx × Rnu → Rny represents the measurement model.
For our specific case, a linear model is considered, and the
mapping hi for the i th local filter is chosen as follows:

hi
(
xi,k, uk

)
= H i xi,k (13)

where H i ∈ Rny×nx represents the observation matrix for the
i th local filter [39]. The aim is to facilitate one-to-one mapping
for dimensionality reduction of the state vector according to
the number of measurements assigned to the i th local filter.
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For the proposed distributed framework, EnKFs are utilized
as local filters. This selection offers numerous benefits over
other variants of the KF concerning the stability and scala-
bility of our framework. The EnKF demonstrates exceptional
efficacy in handling high-dimensional nonlinear systems.
Moreover, it exhibits enhanced stability and faster convergence
rates, even when the local filters lack full observability (i.e.,
all observations are not available to each local filter). The
expected performance of our proposed SFDIA architecture
remains largely unaffected, even when applied to an extended
transmission line setup.

The various steps involved in the state estimation process
of the local EnKF are discussed below.

Initialization: The local state vector estimate x̂i,0|0 and local
covariance matrix P i,0|0 are initialized for each local filter
depending on the use case.

Ensemble of Samples Computation: An ensemble of
samples, {x̂( j)

i,k−1|k−1, j = 1, 2, . . . , Ne}, approximately repre-
senting p(xi,k−1|Yi,k−1), where Ne is the ensemble size and
Yi,k−1 = { yi,1, yi,2, . . . , yi,k−1}, is generated. Also, an ensem-
ble of noise samples, {v( j)

i,k , j = 1, 2, . . . , Ne}, is drawn
to represent the process noise distribution N (0, Qi,k). The
initially generated ensemble of the state estimate for the i th
local filter, namely, Xi,0|0 ∈ Rnx×Ne , includes samples in the
form

x̂( j)
i,0|0 = x̂i,0|0 + v

( j)
i,0 , j = 1, 2, . . . , Ne. (14)

Time and Measurement Updates: In the time update step,
the a priori ensemble {x̂( j)

i,k|k−1, j = 1, 2, . . . , Ne} representing
p(xi,k |Yi,k−1) for the i th local filter can be given as follows:

x̂( j)
i,k|k−1 = f i

(
x̂( j)

i,k−1|k−1, u( j)
k−1

)
+ v

( j)
i,k . (15)

The sample mean and covariance of the a priori ensemble can
be calculated as follows:

x̂i,k|k−1 =
1
Ne

Ne∑
j=1

x̂( j)
i,k|k−1

P i,k|k−1 =
1

Ne − 1
Ex

i,k|k−1

(
Ex

i,k|k−1

)T (16)

where the matrix Ex
i,k|k−1 is defined as Ex

i,k|k−1 = [(x̂(1)
i,k|k−1 −

x̂i,k|k−1), . . . , (x̂(Ne)
i,k|k−1− x̂i,k|k−1)]. Next, an ensemble of sam-

ples { ŷ( j)
i,k|k−1, j = 1, 2, . . . , Ne} is constructed to represent

p( yi,k |Yi,k−1), which can be given as follows:

ŷ( j)
i,k|k−1 = hi

(
x̂( j)

i,k|k−1, u( j)
k

)
+ n( j)

i,k (17)

where the ensemble of samples {n( j)
i,k , j = 1, 2, . . . , Ne} is

produced as per the Gaussian distribution N (0, Ri,k) to define
the measurement noise. The sample mean and covariance of
this ensemble are

ŷi,k|k−1 =
1
Ne

Ne∑
j=1

ŷ( j)
i,k|k−1

P y
i,k|k−1 =

1
Ne − 1

E y
i,k|k−1

(
E y

i,k|k−1

)T
(18)

where the matrix E y
i,k|k−1 = [( ŷ(1)

i,k|k−1 − ŷi,k|k−1), . . . ,

( ŷ(Ne)
i,k|k−1 − ŷi,k|k−1)]. The cross covariance between xi,k and

yi,k given Yi,k−1 is

P xy
i,k|k−1 =

1
Ne − 1

Ex
i,k|k−1

(
E y

i,k|k−1

)T
.

Next, each member {x̂( j)
i,k|k−1} of the a priori ensemble is

updated based on the latest measurement yi,k as follows:

x̂( j)
i,k|k = x̂( j)

i,k|k−1 + K i,k

(
yi,k − ŷ( j)

i,k|k−1

)
(19)

K i,k = P xy
i,k|k−1

(
P y

i,k|k−1

)−1
. (20)

The a posteriori ensemble {x̂( j)
i,k|k, j = 1, 2, . . . , Ne} provides

an approximate representation of the conditional probability
distribution p(xi,k |Yi,k) for the i th local filter at the kth time
instant. The updated estimate of the mean and covariance can
be determined using the a posteriori ensemble as follows:

x̂i,k|k =
1
Ne

Ne∑
j=1

x̂( j)
i,k|k

P i,k|k =
1

Ne − 1
Ex

i,k|k

(
Ex

i,k|k

)T (21)

where the matrix Ex
i,k|k is defined as Ex

i,k|k = [(x̂(1)
i,k|k −

x̂i,k|k), . . . , (x̂(Ne)
i,k|k− x̂i,k|k)]. The above ensemble-based predic-

tion and update are iteratively applied in a recursive manner.
The various steps involved in the implementation of the i th
local EnKF filter are summarized in Algorithm 1. Moreover,
the EnKF’s time and measurement updates are explicitly
outlined as follows.

Time Update:

x̂( j)
i,k|k−1 = f i

(
x̂( j)

i,k−1|k−1, u( j)
k−1

)
+ v

( j)
i,k

ŷ( j)
i,k|k−1 = hi

(
x( j)

i,k|k−1, u( j)
k

)
+ n( j)

i,k

x̂i,k|k−1 =
1
Ne

Ne∑
j=1

x̂( j)
i,k|k−1

ŷi,k|k−1 =
1
Ne

Ne∑
j=1

ŷ( j)
i,k|k−1

Ex
i,k|k−1 =

[(
x̂(1)

i,k|k−1 − x̂i,k|k−1

)
, . . . ,

(
x̂(Ne)

i,k|k−1 − x̂i,k|k−1

)]
E y

i,k|k−1 =

[(
ŷ(1)

i,k|k−1 − ŷi,k|k−1

)
, . . . ,

(
ŷ(Ne)

i,k|k−1 − ŷi,k|k−1

)]
P i,k|k−1 =

1
Ne − 1

Ex
i,k|k−1

(
Ex

i,k|k−1

)T
.

Measurement Update:

P xy
i,k|k−1 =

1
Ne − 1

Ex
i,k|k−1

(
E y

i,k|k−1

)T

P y
i,k|k−1 =

1
Ne − 1

E y
i,k|k−1

(
E y

i,k|k−1

)T

K i,k = P xy
i,k|k−1

(
P y

i,k|k−1

)−1

x̂( j)
i,k|k = x̂( j)

i,k|k−1 + K i,k

(
yi,k − ŷ( j)

i,k|k−1

)
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Algorithm 1 Implementation of the ith Local EnKF Filter
During the kth Time Instant

Input: Ensemble of samples at the (k − 1)th time instant
{x̂( j)

i,k−1|k−1, 1 ≤ j ≤ Ne}

1 Step 1: Generate a priori ensemble:
2 for each sample do
3 Process model update using eq. (15)
4 end for
5 A priori state estimate and covariance using

eq. (16)
6 Step 2: Generate measurement ensemble:
7 for each sample do
8 Measurement model update using eq. (17)
9 end for
10 Sample mean and covariance of the

measurement ensemble using eq. (18)
11 Step 3: Generate a posteriori measurement

ensemble:
12 for each sample do
13 Update each a priori sample by incorporating

the kth measurement using eq. (19) and eq. (20)
14 end for
15 Step 4: Compute local state estimate and

covariance:
16 Obtain sample mean and covariance of the

a posteriori ensemble using eq. (21)
Output: Local state estimate x̂i,k|k , and covariance P̂ i,k|k at
the kth time instant

x̂i,k|k =
1
Ne

Ne∑
j=1

x̂( j)
i,k|k

Ex
i,k|k =

[(
x̂(1)

i,k|k − x̂i,k|k

)
, . . . ,

(
x̂(Ne)

i,k|k − x̂i,k|k

)]
P i,k|k =

1
Ne − 1

Ex
i,k|k

(
Ex

i,k|k

)T
.

Employing the grouping technique discussed in
Section III-A, the i th local filter generates the local
state vector estimate x̂i,k|k using the measurement subset
yi,k , where x̂i,k|k represents the complete measurement vector
yk . It is worth noting that the local measurement group yi,k
only influences the corresponding elements in the local state
estimate x̂i,k|k . Moreover, the Kalman gain matrix K i,k plays
a critical role during the measurement update of the local
filter, as it significantly impacts the a posterior state estimate.
The assumption that all measurements are independent
and uncorrelated enables us to selectively set only those
columns of the K i,k to nonzero values, which correspond
to the measurements present in both x̂i,k|k and yi,k while
setting the rest of the entries to zero. For instance, if the cth
measurement is missing from the subset yi,k , then all the
elements in the cth column of the gain matrix K i,k are set to
zero. Consequently, the a posterior estimates of the remaining
subsets remain equal to the a priori estimates. Hence, this
approach ensures that the local measurement subset solely
affects its respective elements in the state vector estimate,
leaving the other elements unchanged. In the following

subsection, we will discuss how this grouping technique
facilitates fault detection.

C. Fault Detection
For fault detection, the state-variance vector (ξ k ∈ Rnx×1)

serves as an anomaly indicator. Its ℓth entry ξℓ,k is defined as
follows:

ξℓ,k =

√√√√ 1
M

M∑
i=1

(
x̂ (ℓ)

i,k|k −
1
M

M∑
i=1

(
x̂ (ℓ)

i,k|k

))2

(22)

where x̂ (ℓ)
i,k|k represents the ℓth entry of the i th local-filter

state estimate x̂i,k|k . When a fault occurs, the entries of
the state-variance vector will increase, thus facilitating fault
detection. Specifically, when the parameter ξℓ,k exceeds a
predetermined threshold γℓ, we infer the presence of a fault,
i.e.,

dℓ,k =

{
1, ξℓ,k > γℓ

0, ξℓ,k < γℓ.
(23)

Once a faulty condition is identified, it is crucial to deter-
mine the exact location of the faulty sensors. This task
can be accomplished by analyzing the components of the
state-variance vector ξ k that meet the aforementioned criterion.
It is important to highlight that this approach can be utilized
to identify multiple sensor faults occurring simultaneously.
To elaborate, when the state-variance values ξℓ,k , ξp,k , and
ξn,k exceed the threshold γℓ, it indicates a fault in the sensors
corresponding to positions ℓ, p, and n. Furthermore, the set
containing the location of the faulty sensors can be defined as
follows:

F =
{
l : ξℓ,k > γℓ

}
. (24)

While traditional fault detection can be accomplished using
the fixed thresholding technique. However, conventional fixed
thresholds may encounter difficulties in adapting to varying
environmental conditions, leading to false positives or missed
detections. Hence, enhancing the accuracy and responsiveness
of the fault detection system highlights the necessity of lever-
aging adaptive thresholding for fault diagnosis. This topic is
comprehensively explored in the subsequent subsection.

D. Adaptive Thresholding
Given the inherent uncertainties in real systems, designing

appropriate thresholds for accurately determining the location
of the faulty sensors becomes a crucial aspect of fault diagno-
sis. While evaluating appropriate threshold values, opting for
smaller thresholds enhances the probability of encountering
false alarms, whereas favoring larger thresholds contributes to
more missed alarms and reduced fault detection sensitivity.
Hence, adopting an adaptive thresholding approach becomes
essential to facilitate robust sensor fault detection against
uncertainties, while also mitigating the occurrence of false
alarms [40], [41].

To implement the time-varying adaptive thresholding mech-
anism, an error metric Ek ≜ [e1,k, e2,k, e3,k, . . . , eN ,k] ∈

Rm×N is considered, where N signifies the number of sensors.
To evaluate the ℓth sensor error metric eℓ,k ∈ Rm×1, a moving
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window of fixed length m is employed. The generation of eℓ,k

utilizes state-variance values corresponding to the current and
previous time instances that satisfy the condition ξℓ,k < γℓ.
Hence, the error metric eℓ,k can be formulated as follows:

eℓ,k =
[
ξℓ,k−m, ξℓ,k−m+1, . . . , ξℓ,k−1, ξℓ,k

]T
. (25)

The mean µe,ℓ,k and variance σe,ℓ,k of the error metric eℓ,k can
be evaluated as follows:

µe,ℓ,k =
1
m

k∑
j=k−m

ξℓ, j

σe,ℓ,k =
1
m

k∑
j=k−m

ξℓ, j −
1
m

k∑
j=k−m

(
ξℓ, j

)2

(26)

where ξℓ, j is the ℓth entry of the state-variance vector ξ j at
the j th time instant. Using the abovementioned statistics, the
ℓth entry of the adaptive threshold vector γ k during the kth
time instant, defined by γℓ,k , can be computed as follows:

γℓ,k = rµe,ℓ,k + λσe,ℓ,k (27)

where the tuning factors r , λ , and the time-window m are cho-
sen based on the specific use case and the desired performance
goals. Note that under normal conditions without faults, m
remains fixed. However, in the presence of a fault, m becomes
variable. For instance, when a fault occurs at the kth time
instant, the error metric eℓ,k stops updating the state-variance
values associated with the current (ξℓ,k) and subsequent time
instances. Consequently, the number of state-variance values
included in eℓ,k decreases. Nevertheless, it is essential to
ensure that m does not fall below its threshold value m t ,
thereby satisfying the condition m ≮ m t .

Conversely, the adaptive threshold gradually achieves a
smoother and more accurate value with the increasing value
of m. However, a larger value of m cannot be employed to
due to computational constraints. By appropriately adjusting
the tuning factors, a desired level of the threshold can be
determined. This demonstrates the robustness of the adaptive
thresholding method in fault detection, particularly in spa-
tiotemporal systems where nonfaulty neighboring sensors may
also exhibit high state-variance values. The adaptive threshold
dynamically modifies its threshold value based on the observed
state-variance values from both faulty and nonfaulty sensors.
Consequently, the adaptive thresholding approach significantly
enhances the accurate detection of faulty sensor positions,
facilitating the effective isolation and handling of erroneous
sensor measurements.

E. Isolation and Accommodation
After identification of the faulty sensor locations using the

techniques discussed in Sections III-C and III-D, it becomes
feasible to readily isolate the faulty sensors and replace their
flawed measurements with measurements obtained through
interpolation across the spatial domain. Given that the pro-
posed framework is based on the distributed system with
spatiotemporal dynamics, the exact locations of the nonfaulty
sensors across the space are known. For instance, if the sensor

at the ℓth spatial location is faulty, the accurate measurement
for the ℓth sensor can be determined through 1-D linear inter-
polation, utilizing measurements of the neighboring nonfaulty
sensors. Similarly, when an array of sensors is identified as
faulty, one can leverage the nonfaulty sensors located at the
boundary for interpolation. In the final stage, the corrected
measurements are used to compute the final fault-free state
vector estimate x̂m,k|k using a conventional EnKF. The various
steps involved in the implementation of conventional EnKF are
summarized below.

Initialization: The state vector estimate x̂0|0 and covariance
matrix P0|0 for the conventional filter are initialized.

Initial Ensemble Point Computation: The initial ensemble
of state estimates {x̂( j)

0|0, j = 1, 2, . . . , Ne} is generated using
an ensemble of samples {v( j)

0 , j = 1, 2, . . . , Ne} drawn from
the Gaussian distribution N (0, Qk).

Time and Measurement Update: At each update step, a new
set of samples {x̂( j)

k|k−1, j = 1, 2, . . . , Ne} is generated using
an ensemble of samples {v( j)

k , j = 1, 2, . . . , Ne} drawn from
the Gaussian distribution N (0, Qk).

Time Update:

x̂( j)
k|k−1 = f

(
x̂( j)

k−1|k−1, u( j)
k−1

)
+ v

( j)
k

ŷ( j)
k|k−1 = h

(
x( j)

k|k−1, u( j)
k

)
+ n( j)

k

x̂k|k−1 =
1
Ne

Ne∑
j=1

x̂( j)
k|k−1

ŷk|k−1 =
1
Ne

Ne∑
j=1

ŷ( j)
k|k−1

Ex
k|k−1 =

[(
x̂(1)

k|k−1 − x̂k|k−1

)
, . . . ,

(
x̂(Ne)

k|k−1 − x̂k|k−1

)]
E y

k|k−1 =

[(
ŷ(1)

k|k−1 − ŷk|k−1

)
, . . . ,

(
ŷ(Ne)

k|k−1 − ŷk|k−1

)]
Pk|k−1 =

1
Ne − 1

Ex
k|k−1

(
Ex

k|k−1

)T
.

Measurement Update:

P xy
k|k−1 =

1
Ne − 1

Ex
k|k−1

(
E y

k|k−1

)T

P y
k|k−1 =

1
Ne − 1

E y
k|k−1

(
E y

k|k−1

)T

K k = P xy
k|k−1

(
P y

k|k−1

)−1

x̂( j)
m,k|k = x̂( j)

k|k−1 + K k

(
yk − ŷ( j)

k|k−1

)
x̂m,k|k =

1
Ne

Ne∑
j=1

x̂( j)
m,k|k

Ex
k|k =

[(
x̂(1)

m,k|k − x̂m,k|k

)
, . . . ,

(
x̂(Ne)

m,k|k − x̂m,k|k

)]
Pm,k|k =

1
Ne − 1

Ex
k|k

(
Ex

k|k

)T
.

The ensemble of samples {x̂( j)
m,k|k, j = 1, 2, . . . , Ne} is sub-

sequently shared with the local filters and is used as a
prior information during the next iteration. Furthermore, the
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Algorithm 2 MM-SFDIA Architecture in the Presence of
Multiple Sensor Faults

Input: Number of locals M , boundary condition ubc

and ensemble size Ne

1 Initialization: x̂i,0|0 = x̂0|0, P i,0|0 = P0|0

2 Initialize ensembles of local EnKFs {x̂( j)
i,0|0} and

conventional EnKF {x̂( j)
0|0}

3 while k < kend do
4 Local filters: Compute local estimates x̂i,k|k and

P i,k|k using time and measurement updates
5 Fault detection:
6 Compute state-variance vector ξ k using eq. (22)

and adaptive threshold γ k using eq. (27)
7 for ℓ = 1, 2, . . . , N do
8 if ξℓ,k > γℓ,k then
9 Fault in ℓth sensor
10 ℓth sensor measurement correction using

spatial interpolation
11 else
12 No fault
13 end if
14 end for
15 Conventional filter: Compute global estimates

x̂m,k|k and Pm,k|k using fault-free measurements
16 Assign global ensemble to locals: x̂( j)

i,k|k = x̂( j)
m,k|k

17 k ← k + 1
18 end while
Output:Fault-free global estimates x̂m and Pm

TABLE II
PARAMETERS UTILIZED FOR SIMULATIONS

various steps involved to implement the proposed MM-SFDIA
architecture are outlined in Algorithm 2.

IV. NUMERICAL RESULTS

To demonstrate the efficacy of our proposed architecture,
we generate simulated data by employing a numerical solution
of the transient flow model for the natural gas described in
Section II. We opted for a high-pressure natural-gas pipeline
employing the parameters outlined in Table II. The simulations
are conducted over a time span of t f ∈ [0, 3600 s], with the
initial conditions of p(0, t) = 8.4 MPa, T (0, t) = 303.15 K,
and ṁ(L , t) = f (t). The boundary conditions align with
those in [29]. For the numerical solution of the transient-
flow model, we consider the spatial and temporal step sizes as
1s = 7500 m and 1t = 10 s, respectively. Fig. 2 illustrates
the boundary conditions and the associated spatial–temporal
evolution of the state variables in the absence of additive noise.
Moreover, Fig. 2(a) depicts the boundary conditions for flow

Fig. 2. Simulated data. (a) Boundary conditions. (b) Pressure. (c) Flow
rate. (d) Temperature.

rate, highlighting rapid changes in the solution domain. These
changes may potentially stem from disturbances in gas demand
or changes in the operating conditions of system-controlling
devices, such as valves, compressors, and pressure regulators.

To generate the noisy fault-free measurement for the
j th sensor at the kth time instant (y j [k]), we superimpose
zero-mean white Gaussian noise (q j [k]) to the generated ideal
(devoid of both noise and fault) value (x j [k])

y j [k] = x j [k]+ q j [k]. (28)

The measurement noises (q j [k]) are generated according to the
distributions N (0, 0.00052), N (0, 1.52), and N (0, 2.52) with
variance in MPa2, K2, and (kg/s)2 corresponding to pressure,
temperature, and flow rate, respectively.

To assess the performance of the proposed MM-SFDIA
framework, the synthetically generated fault signals are added
to the simulated data obtained from the transient-flow model.
This process emulates sensor measurements in the presence
of sensor faults. Moreover, sensors can experience different
types of faults, including bias, drift, freezing, and random
faults, which are among the most commonly observed [3],
[4]. While maintaining generality, we focused on bias and
drift faults to exemplify hard and soft failures, respectively.
The mathematical models for these fault types are as follows.

1) Bias Fault: A consistent level (or bias) b is introduced to
the sensor measurements for a duration of G consecutive
samples, denoted as follows:

y f
j [k] =

{
y j [k]+ b, 0 ≤ k − g ≤ G
y j [k], else

where y f
j [k] denotes the faulty measurement, while g

signifies the onset time of the fault.
2) Drift Fault: The actual measurement gradually shifts

upward (up to a maximum bias level b) over the span
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Fig. 3. State estimation using classic EnKF (green), fusing UKF (purple)
[18], and proposed MM-SFDIA (red) techniques in the presence of
three simultaneous bias and drift faults at indices ℓ = 8,29, and 50.
(a)–(c) [resp. (d)–(f)] Results for bias (resp. drift) faults, where actual
and faulty values are depicted in black and blue, respectively.

of G time instances, i.e.,

y f
j [k] =


y j [k]+

b(k − g + 1)

G
, 0 ≤ k − g ≤ G

y j [k]+ b, G≤k − g≤G + K
y j [k], else.

Here, K signifies the count of samples over which the
drift fault sustains the saturated bias level b. Moreover,
we emphasized the influence of the drift by assuming
G > K .

The efficacy of the proposed strategies is explored in the
presence of various sensor fault types. In particular, we investi-
gate weak and strong faults, characterized, respectively, by bias
and drift. To model weak faults (and strong faults), we assume
that the absolute level b follows a uniform distribution between
20% and 40% (and 60%–90%) of the data amplitude. In addi-
tion, the actual level is assigned a random sign, introducing
both positive and negative faults in a randomized manner. The
fault durations (G and K ) are uniformly distributed between
five and six consecutive samples. Note that adopting a uniform
distribution for both fault level b and fault durations (G and K )
aids in assessing the performance of SFDIA without focusing
on a specific fault level or length.

For our experimental setup, we consider a total number of
N = 63 sensors and M = 3 local EnKF filters. Each local
filter receives a set of 21 sensor measurements. More specif-
ically, the same types of sensor measurements are grouped
together and fed as an input to each local: the first local

Fig. 4. State variance in the presence of bias fault added simultane-
ously to three sensors at indices ℓ = 8,29, and 50 (all located at spatial
node n = 8) at time instance t = 350 s. (a) State variance of pressure
sensors. (b) State variance of flow rate sensors. (c) State variance of
temperature sensors.

filter receives 21 pressure measurements, the second local filter
receives 21 flow-rate measurements, and the third local filter
receives 21 temperature measurements. The ensemble size for
the local EnKF filters is chosen as 300, while the conventional
EnKF utilizes an ensemble of size 40. This selection aims
to optimize the performance of the local filters. The a priori
estimate of the local covariance matrix P i,0|0 is chosen as
an identity matrix. Furthermore, the standard deviation of the
process noise is set 10% lower than the measurement noise.
The matrices Qi,k and Ri,k are considered to be diagonal
matrices, with the entries on the main diagonal corresponding
to the variances of the process noise and measurement noise,
respectively. In the adaptive thresholding approach, the time
window is set as m = 10 and m t = 5.

We explored the effectiveness of our proposed technique in
the presence of three bias and drift faults introduced to the
pressure, flow rate, and temperature sensors simultaneously.
These faults are associated with indices ℓ = 8, 29, and 50,
respectively, and span the time period 300 s ≤ t ≤ 500 s. The
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Fig. 5. Comparison between adaptive and fixed thresholding tech-
niques in the presence of weak bias faults corresponding to indices
ℓ = 8,29, and 50. (a)–(c) [resp. (d)–(f)] Proposed adaptive (resp. fixed)
thresholding technique, where state-variance and threshold values are
shown in blue and red, respectively.

actual and estimated state values, determined using our novel
MM-SFDIA architecture (outlined in Section III), fusing-
UKF (incorporating a single-fault detection and isolation
mechanism) [18], and classic EnKF, are depicted in Fig. 3.
It is evident from the figure that our proposed MM-SFDIA
approach exhibits effective capability in detecting and isolating
faulty sensors, thus demonstrating its potentially superior
performance over the other techniques. Conversely, alternative
methods encounter challenges in accurately estimating the
state vector due to their limited ability to detect and isolate
sensor faults. Furthermore, Fig. 4 provides a comparison of
the state variance ξl,k , as defined in (22), in the context of the
bias fault. This comparison pertains to the instances where
the faults are attributed to sensor indices ℓ = 8, 29, and 50,
all situated at spatial node n = 8. A clear observation is that
the state-variance associated with the aforementioned faulty
sensors exhibits significantly elevated values during the time
interval 300 s ≤ t ≤ 500 s. This observation confirms the
effectiveness of analyzing the state-variance vector values to
reliably identify and isolate faulty sensors within the system.
Considering weak bias faults affecting sensors at indices
ℓ = 8, 29, and 50, we contrasted the adaptive thresholding
technique, discussed in Section III-D, with the fixed threshold
strategy, as depicted in Fig. 5. The results clearly demonstrate
the effectiveness of the adaptive thresholding approach in fault
detection and isolation.

Fig. 6. ROC plots indicating detection performance of MM-SFDIA for
three simultaneous faults of distinct types: (a) strong bias (SB), (b) weak
bias (WB), (c) strong drift (SD), and (d) weak drift (WD).

Monte Carlo simulations involving 100 runs are conducted
using MATLAB2 software to obtain the numerical results.
The probabilities of detection and false alarm, calculated on
a sample-by-sample basis, are chosen as metrics for assess-
ing the detection efficacy of the MM-SFDIA architecture
in the presence of multiple sensor faults. To evaluate this
performance, receiver operating characteristic (ROC) curves,
as depicted in Fig. 6, are generated by varying the adaptive
threshold value defined in (27). The findings convincingly
highlight the effective fault detection capability of the pro-
posed MM-SFDIA architecture, even while dealing with weak
sensor faults. Next, the robustness of the proposed architecture
is validated in terms of detection accuracy. In Fig. 7(a), a com-
parison is presented between detection accuracy and varying
fault rates. The results demonstrate that the proposed approach
maintains a high level of accuracy, even while dealing with
significant faults. Furthermore, the detection accuracy perfor-
mance is assessed against the varying number of locals in
Fig. 7(b). It is evident that the proposed architecture maintains
consistent performance with the increasing number of locals.
In addition, Fig. 8 depicts the impact of diverse bias levels
on detection accuracy. The findings clearly indicate that the
proposed framework exhibits high performance even when the
bias levels are low.

A comparison between MM-SFDIA and fusing UKF, fusing
EnKF and fusing EKF [18], [20], is presented in Table III to
evaluate the detection accuracy in a scenario involving a single
fault for fixed tuning parameters r = 13 and λ = 15. The
outcomes clearly demonstrate that the MM-SFDIA approach
exhibits superior performance even in the case of weak
faults. A more comprehensive assessment of the proposed
architecture in the context of detecting and isolating multiple
faults is demonstrated in Fig. 9. The decision outcomes are
analyzed over a time interval of 50 samples, focusing on weak
bias faults. In this representation, the “◦” symbol signifies

2Registered trademark.
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TABLE III
CONTRASTING DETECTION ACCURACY (%) OF MM-SFDIA AGAINST FUSING UKF, FUSING EKF, AND FUSING ENKF FOR SINGLE-FAULT CASE,

CONSIDERING DIFFERENT TYPES OF FAULT

TABLE IV
CONTRASTING COMPUTATION COMPLEXITY OF MM-SFDIA WITH FUSING UKF, FUSING EKF, AND FUSING ENKF, IN TERMS OF EXECUTION

TIME AND NUMBER OF LOCALS FOR SINGLE- AND MULTIPLE-FAULT CASE

Fig. 7. Detection accuracy performance of MM-SFDIA versus the differ-
ent numbers of (a) faults and (b) locals (considering three simultaneous
weak bias faults).

Fig. 8. Detection accuracy of MM-SFDIA versus the bias level consid-
ering three simultaneous bias faults.

the actual/true faulty sensors, while “None” indicates the
absence of faults within the system. The miss-detected faults
are marked with the “∗” symbol. In addition, when a fault
is detected, the identified faults are indicated with the “+”
symbol. A significant observation drawn from Fig. 9 is that
the proposed architecture can successfully detect all the faults,
leaving no fault undetected and only a few false detections.

Fig. 9. Fault classification visualization of the proposed architecture.

In addition, an analysis of computation complexity, consid-
ering execution time and number of local filters, is presented
in Table IV for the proposed MM-SFDIA and various fusing
architectures addressing single and multiple faults. The results
distinctly demonstrate that the proposed architecture exhibits
reduced execution time and employs a lower count of local
filters in both single- and multiple-fault scenarios.

V. CONCLUSION

This article presented an innovative model-based architec-
ture for detecting and isolating multiple sensor faults within
a natural gas pipeline system experiencing transient flow.
The proposed approach leverages a distributed EnKF-based
framework, where each local filter is fed with an independent
set of measurements for local state estimation. Subsequently,
a state-variance vector is computed and compared against
an adaptable threshold, enabling the detection of faulty
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sensors. These faulty sensor measurements are substituted with
corrected measurements obtained via spatial interpolation. Fur-
thermore, a conventional EnKF is employed to generate global
estimates using the corrected measurements, which are then
shared across all local EnKFs for parameter updation. The sim-
ulation results demonstrated the effectiveness of the proposed
architecture in detecting and isolating multiple sensor faults
simultaneously. Future research will focus on investigating
multisensor fault detection in interconnected large-scale wire-
less sensor networks, exploring alternative distributed filtering
methodologies, such as consensus or diffusion.
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